
→|�|TOC

IQI 04, Seminar 3
Produced with pdflatex and xfig

• Oracles

• The Classical Parity Problem.

• Quantum Oracles.

• The Quantum Parity Problem.

• Gate Set Limitations.

• Universality.

Colorado
University of Colorado at Boulder

E. “Manny” Knill: knill@boulder.nist.gov

mailto:knill@boulder.nist.gov

1
←|Bot|→|�|TOC

Colorado
University of Colorado at Boulder

Classical Oracles

• A classical oracle O is a device that takes an input x and
outputs an answer O(x).

x O(x)O

1
←|Top|Bot|→|�|TOC

Colorado
University of Colorado at Boulder

Classical Oracles

• A classical oracle O is a device that takes an input x and
outputs an answer O(x).

x O(x)O

Examples:
O1(x) = 1 if x is a true statement about numbers,
O1(x) = 0 otherwise.

1
←|Top|Bot|→|�|TOC

Colorado
University of Colorado at Boulder

Classical Oracles

• A classical oracle O is a device that takes an input x and
outputs an answer O(x).

x O(x)O

Examples:
O1(x) = 1 if x is a true statement about numbers,
O1(x) = 0 otherwise.
O2(x) = 1 if x is a satisfiable boolean formula,
O2(x) = 0 otherwise.

1
←|Top|Bot|→|�|TOC

Colorado
University of Colorado at Boulder

Classical Oracles

• A classical oracle O is a device that takes an input x and
outputs an answer O(x).

x O(x)O

Examples:
O1(x) = 1 if x is a true statement about numbers,
O1(x) = 0 otherwise.
O2(x) = 1 if x is a satisfiable boolean formula,
O2(x) = 0 otherwise.
. . . Oracles can be used to add computational power.

1
←|Top|Bot|→|�|TOC

Colorado
University of Colorado at Boulder

Classical Oracles

• A classical oracle O is a device that takes an input x and
outputs an answer O(x).

x O(x)O

Examples:
O1(x) = 1 if x is a true statement about numbers,
O1(x) = 0 otherwise.
O2(x) = 1 if x is a satisfiable boolean formula,
O2(x) = 0 otherwise.
. . . Oracles can be used to add computational power.

O3(x) computes an unknown parity of x.
Determine the parity.

1
←|Top|→|�|TOC

Colorado
University of Colorado at Boulder

Classical Oracles

• A classical oracle O is a device that takes an input x and
outputs an answer O(x).

x O(x)O

Examples:
O1(x) = 1 if x is a true statement about numbers,
O1(x) = 0 otherwise.
O2(x) = 1 if x is a satisfiable boolean formula,
O2(x) = 0 otherwise.
. . . Oracles can be used to add computational power.

O3(x) computes an unknown parity of x.
Determine the parity.

. . . Oracles can act as black boxes to be analyzed.

2
←|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (0110) = (1, 1, 1, 1)(0, 1, 1, 0)T

2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (0110) = (1, 1, 1, 1)(0, 1, 1, 0)T = 2 mod 2 = 0

2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T

2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

. . . computations with 0-1 entities are modulo 2.

2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

. . . computations with 0-1 entities are modulo 2.

• Parity of a substring.
Examples:

P(0,1,0,1)(0110) = (0, 1, 0, 1)(0, 1, 1, 0)T

2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

. . . computations with 0-1 entities are modulo 2.

• Parity of a substring.
Examples:

P(0,1,0,1)(0110) = (0, 1, 0, 1)(0, 1, 1, 0)T = 1 mod 2 = 1

2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

. . . computations with 0-1 entities are modulo 2.

• Parity of a substring.
Examples:

P(1,1,1,0)(0110) = (1, 1, 1, 0)(0, 1, 1, 0)T

2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

. . . computations with 0-1 entities are modulo 2.

• Parity of a substring.
Examples:

P(1,1,1,0)(0110) = (1, 1, 1, 0)(0, 1, 1, 0)T = 2 mod 2 = 0

2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

. . . computations with 0-1 entities are modulo 2.

• Parity of a substring.
Examples:

Pp(s) = p · s

2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

. . . computations with 0-1 entities are modulo 2.

• Parity of a substring.
Examples:

Pp(s) = p · s

• A parity oracle. ps p · s

How many “queries” does it take to learn p?

2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

. . . computations with 0-1 entities are modulo 2.

• Parity of a substring.
Examples:

Pp(s) = p · s

• A parity oracle. p(a, b)T (p1, p2)(a, b)T

How many “queries” does it take to learn p?

2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

. . . computations with 0-1 entities are modulo 2.

• Parity of a substring.
Examples:

Pp(s) = p · s

• A parity oracle. p(a, b)T (p1, p2)(a, b)T

(1, 0)T (p1, p2)(1, 0)T = p1

How many “queries” does it take to learn p?

2
←|Top|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

. . . computations with 0-1 entities are modulo 2.

• Parity of a substring.
Examples:

Pp(s) = p · s

• A parity oracle. p(a, b)T (p1, p2)(a, b)T

(1, 0)T (p1, p2)(1, 0)T = p1

(0, 1)T (p1, p2)(0, 1)T = p2

How many “queries” does it take to learn p?

3
←|Bot|→|�|TOC

Reversible Oracles

• Reversible oracles add the answer to a register.

x x

b b +O(x)O

3
←|Top|Bot|→|�|TOC

Reversible Oracles

• Reversible oracles add the answer to a register.

x x

b b +O(x)O

• Simulation, using a standard oracle.

x x

b b +O(b)

O

3
←|Top|→|�|TOC

Reversible Oracles

• Reversible oracles add the answer to a register.

x x

b b +O(x)O

• Simulation, using a standard oracle.

x x

b b +O(b)

O

• Is the simulation equivalent to a reversible oracle?

4
←|Bot|→|�|TOC

Quantum Oracles

• A Quantum Oracle is the linear extension of a
classical reversible oracle.∑
x,b αx,b x〉

I
b〉

O

 ∑
x,b αx,b x〉

I
b +O(x)〉

O

O

4
←|Top|Bot|→|�|TOC

Quantum Oracles

• A Quantum Oracle is the linear extension of a
classical reversible oracle.∑
x,b αx,b x〉

I
b〉

O

 ∑
x,b αx,b x〉

I
b +O(x)〉

O

O

• Quantum oracles versus classical reversible oracles?

4
←|Top|→|�|TOC

Quantum Oracles

• A Quantum Oracle is the linear extension of a
classical reversible oracle.∑
x,b αx,b x〉

I
b〉

O

 ∑
x,b αx,b x〉

I
b +O(x)〉

O

O

• Quantum oracles versus classical reversible oracles?

Does it help to use a quantum computer to
analyze a classical reversible oracle?

5
←|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

5
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.

5
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1. Parity and the Hadamard basis.

Def.:

{
+〉 = 1√

2
(0〉+ 1〉)

−〉 = 1√
2
(0〉 − 1〉)

Which logical states ab〉
AB

have a minus sign in
+〉

A
+〉

B

5
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1. Parity and the Hadamard basis.

Def.:

{
+〉 = 1√

2
(0〉+ 1〉)

−〉 = 1√
2
(0〉 − 1〉)

Which logical states ab〉
AB

have a minus sign in
+〉

A
+〉

B
, +〉

A
−〉

B

5
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1. Parity and the Hadamard basis.

Def.:

{
+〉 = 1√

2
(0〉+ 1〉)

−〉 = 1√
2
(0〉 − 1〉)

Which logical states ab〉
AB

have a minus sign in
+〉

A
+〉

B
, +〉

A
−〉

B
, −〉

A
+〉

B

5
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1. Parity and the Hadamard basis.

Def.:

{
+〉 = 1√

2
(0〉+ 1〉)

−〉 = 1√
2
(0〉 − 1〉)

Which logical states ab〉
AB

have a minus sign in
+〉

A
+〉

B
, +〉

A
−〉

B
, −〉

A
+〉

B
, −〉

A
−〉

B
?

5
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1. Parity and the Hadamard basis.

Def.:

{
+〉 = 1√

2
(0〉+ 1〉)

−〉 = 1√
2
(0〉 − 1〉)

Which logical states ab〉
AB

have a minus sign in
+〉

A
+〉

B
, +〉

A
−〉

B
, −〉

A
+〉

B
, −〉

A
−〉

B
?

Ans.: States with odd parity w.r.t. the −〉-qubits.

5
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1. Parity and the Hadamard basis.

Def.:

{
+〉 = 1√

2
(0〉+ 1〉)

−〉 = 1√
2
(0〉 − 1〉)

Which logical states ab〉
AB

have a minus sign in
+〉

A
+〉

B
, +〉

A
−〉

B
, −〉

A
+〉

B
, −〉

A
−〉

B
?

Ans.: States with odd parity w.r.t. the −〉-qubits.

Are these states distinguishable?

5
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1. Parity and the Hadamard basis.

Def.:

{
+〉 = 1√

2
(0〉+ 1〉)

−〉 = 1√
2
(0〉 − 1〉)

Which logical states ab〉
AB

have a minus sign in
+〉

A
+〉

B
, +〉

A
−〉

B
, −〉

A
+〉

B
, −〉

A
−〉

B
?

Ans.: States with odd parity w.r.t. the −〉-qubits.

Are these states distinguishable?

H

H+〉
A

+〉
B

0〉
A

0〉
B

Product state convention:
Multiply states associated with different qubit lines.

5
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1. Parity and the Hadamard basis.

Def.:

{
+〉 = 1√

2
(0〉+ 1〉)

−〉 = 1√
2
(0〉 − 1〉)

Which logical states ab〉
AB

have a minus sign in
+〉

A
+〉

B
, +〉

A
−〉

B
, −〉

A
+〉

B
, −〉

A
−〉

B
?

Ans.: States with odd parity w.r.t. the −〉-qubits.

Are these states distinguishable?

H

H+〉
A

−〉
B

0〉
A

1〉
B

5
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1. Parity and the Hadamard basis.

Def.:

{
+〉 = 1√

2
(0〉+ 1〉)

−〉 = 1√
2
(0〉 − 1〉)

Which logical states ab〉
AB

have a minus sign in
+〉

A
+〉

B
, +〉

A
−〉

B
, −〉

A
+〉

B
, −〉

A
−〉

B
?

Ans.: States with odd parity w.r.t. the −〉-qubits.

Are these states distinguishable?

H

H−〉
A

+〉
B

1〉
A

0〉
B

5
←|Top|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1. Parity and the Hadamard basis.

Def.:

{
+〉 = 1√

2
(0〉+ 1〉)

−〉 = 1√
2
(0〉 − 1〉)

Which logical states ab〉
AB

have a minus sign in
+〉

A
+〉

B
, +〉

A
−〉

B
, −〉

A
+〉

B
, −〉

A
−〉

B
?

Ans.: States with odd parity w.r.t. the −〉-qubits.

Are these states distinguishable?

H

H−〉
A

−〉
B

1〉
A

1〉
B

6
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

6
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

O

x〉
I

a〉
O

x〉
I

a +O(x)〉
O

6
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

O

x〉
I

a〉
O

x〉
I{
a〉

O
if O(x) = 0

not a〉
O

if O(x) = 1

6
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

Ox〉
I

a〉
O

x〉
I{
a〉

O
if O(x) = 0

not a〉
O

if O(x) = 1

6
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

6
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

1√
2
(0〉

O
+ 1〉

O
) 1√

2
(0〉

O
+ 1〉

O
)

6
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

+〉
O

+〉
O

6
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

1√
2
(0〉

O
− 1〉

O
) − 1√

2
(0〉

O
− 1〉

O
)

6
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

−〉
O

−−〉
O

−〉 is an eigenstate of not with eigenvalue −1.

6
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

ps〉
I

−〉
O

−〉 is an eigenstate of not with eigenvalue −1.

6
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

ps〉
I

−〉
O

s〉
I

(−1)p·s −〉
O

−〉 is an eigenstate of not with eigenvalue −1.

6
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

ps〉
I

−〉
O

(−1)p·s s〉
I

−〉
O

−〉 is an eigenstate of not with eigenvalue −1.

6
←|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

p

−〉
O

1
2n/2

∑
s s〉

I
1

2n/2

∑
s(−1)p·s s〉

I

−〉
O

−〉 is an eigenstate of not with eigenvalue −1.

7
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1.&2.

A

B

O

+〉
A
+〉

B
−〉

O

−〉
O

(p1, p2)

(−)p1〉
A
(−)p2〉

B

7
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1.&2.

A

B

O

+〉
A
+〉

B
−〉

O

−〉
O

(p1, p2)

(−)p1〉
A
(−)p2〉

B

H

H

0/1

0/1

p1

p2

7
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1.&2.

A

B

O

+〉
A
+〉

B
−〉

O

−〉
O

(p1, p2)

(−)p1〉
A
(−)p2〉

B

H

H

0/1

0/1

p1

p2

H1

7
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1.&2.

A

B

O

+〉
A
+〉

B
−〉

O

−〉
O

(p1, p2)

(−)p1〉
A
(−)p2〉

B

H

H

0/1

0/1

p1

p2

H1

H

H0

0

7
←|Top|Bot|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1.&2.

A

B

O

+〉
A
+〉

B
−〉

O

−〉
O

(p1, p2)

(−)p1〉
A
(−)p2〉

B

H

H

0/1

0/1

p1

p2

H1

H

H0

0

• One query suffices for solving the n-qubit parity problem.

7
←|→|�|TOC

The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1.&2.

A

B

O

+〉
A
+〉

B
−〉

O

−〉
O

(p1, p2)

(−)p1〉
A
(−)p2〉

B

H

H

0/1

0/1

p1

p2

H1

H

H0

0

• One query suffices for solving the n-qubit parity problem.

. . . note use of “quantum parallelism”.

8
←|Bot|→|�|TOC

Summary of Gates Introduced So Far

Gate picture Symbol Matrix form

0 prep(0)

b0/1 meas(Z 7→b)

8
←|Top|Bot|→|�|TOC

Summary of Gates Introduced So Far

Gate picture Symbol Matrix form

0 prep(0)

b0/1 meas(Z 7→b)

not
(

0 1
1 0

)
Z sgn

(
1 0
0 −1

)

8
←|Top|Bot|→|�|TOC

Summary of Gates Introduced So Far

Gate picture Symbol Matrix form

0 prep(0)

b0/1 meas(Z 7→b)

not
(

0 1
1 0

)
Z sgn

(
1 0
0 −1

)
H had 1√

2

(
1 1
1 −1

)

8
←|Top|Bot|→|�|TOC

Summary of Gates Introduced So Far

Gate picture Symbol Matrix form

0 prep(0)

b0/1 meas(Z 7→b)

not
(

0 1
1 0

)
Z sgn

(
1 0
0 −1

)
H had 1√

2

(
1 1
1 −1

)

cnot(AB)

A

B


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



8
←|Top|→|�|TOC

Summary of Gates Introduced So Far

Gate picture Symbol Matrix form

0 prep(0)

b0/1 meas(Z 7→b)

not
(

0 1
1 0

)
Z sgn

(
1 0
0 −1

)
H had 1√

2

(
1 1
1 −1

)

cnot(AB)

A

B


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


00〉

AB
01〉

AB
10〉

AB
11〉

AB

00〉
AB

01〉
AB

10〉
AB

11〉
AB

9
←|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:

9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.

9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

V U

9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

V UU−1U

9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV

9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV

Error effect determination.

H

9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV

Error effect determination.

H

9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV

Error effect determination.

H

9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV

Error effect determination.

HH H

9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV

Error effect determination.

HH H︸ ︷︷ ︸

9
←|Top|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV

Error effect determination.

H Z

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X Z X

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

X Z X

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

X Z X(
0 1
1 0

) (
1 0
0 −1

) (
0 1
1 0

)
. .

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

X Z X(
0 1
1 0

) (
1 0
0 −1

) (
0 1
1 0

)

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

X Z X(
0 1
1 0

) (
1 0
0 −1

) (
0 1
1 0

)
︸ ︷︷ ︸

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

X Z X(
0 1
1 0

) (
1 0
0 −1

) (
0 1
1 0

)
︸ ︷︷ ︸(

0 −1
1 0

)

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

X Z X(
0 1
1 0

) (
1 0
0 −1

) (
0 1
1 0

)
︸ ︷︷ ︸(

0 −1
1 0

)
−Z(

−1 0
0 1

)

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

X Z X −Z

Z X Z

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

X Z X −Z

Z X Z(
1 0
0 −1

) (
0 1
1 0

) (
1 0
0 −1

)
. .

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

X Z X −Z

Z X Z(
1 0
0 −1

) (
0 1
1 0

) (
1 0
0 −1

)
. .

−X(
0 −1
−1 0

)

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

HH Z

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

HH Z

1√
2

(
1 1
1 −1

)(
1 0
0 −1

)
1√
2

(
1 1
1 −1

)
. .

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

HH Z

1√
2

(
1 1
1 −1

)(
1 0
0 −1

)
1√
2

(
1 1
1 −1

)

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

HH Z

1√
2

(
1 1
1 −1

)(
1 0
0 −1

)
1√
2

(
1 1
1 −1

)
︸ ︷︷ ︸

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

HH Z

1√
2

(
1 1
1 −1

)(
1 0
0 −1

)
1√
2

(
1 1
1 −1

)
︸ ︷︷ ︸

1√
2

(
1 −1
1 1

)

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

HH Z

1√
2

(
1 1
1 −1

)(
1 0
0 −1

)
1√
2

(
1 1
1 −1

)
︸ ︷︷ ︸

1√
2

(
1 −1
1 1

)

X(
0 1
1 0

)

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

HH Z X

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

HH Z X

H HX

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

HH Z X

H HX

1√
2

(
1 1
1 −1

) (
0 1
1 0

)
1√
2

(
1 1
1 −1

)
. .

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

HH Z X

H HX

1√
2

(
1 1
1 −1

) (
0 1
1 0

)
1√
2

(
1 1
1 −1

)
. .

Z(
1 0
0 −1

)

10
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

10
←|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

• sgn and not conjugated by cnot.
cnot(AB)−1

.not(B)
.cnot(AB) = not(B)

,

cnot(AB)−1
.sgn(A)

.cnot(AB) = sgn(A)
,

cnot(AB)−1
.not(A)

.cnot(AB) = not(A)
.not(B)

,

cnot(AB)−1
.sgn(B)

.cnot(AB) = sgn(A)
.sgn(B)

11
←|Bot|→|�|TOC

Preservation of Products of “Flips”

• Products of not and sgn are preserved under conjugation
by operators composed of cnot’s and had’s.

+/−

H

H

H

H

ZI
X

ZI
X

ZI
X

ZI
X

X
IZ

X
IZ

X
IZ

X
IZ

UU−1

11
←|Top|→|�|TOC

Preservation of Products of “Flips”

• Products of not and sgn are preserved under conjugation
by operators composed of cnot’s and had’s.

+/−

H

H

H

H

ZI
X

ZI
X

ZI
X

ZI
X

X
IZ

X
IZ

X
IZ

X
IZ

UU−1

What is the power of this gate set?

12
←|Bot|→|�|TOC

Physically Allowed Reversible Operators

• Define an operator U by linear extension of
U x〉

S
=

∑
y uyx y〉

S

12
←|Top|Bot|→|�|TOC

Physically Allowed Reversible Operators

• Define an operator U by linear extension of
U x〉

S
=

∑
y uyx y〉

S

To be well-defined, U x〉
S

must be a state:∑
y |uyx|2 = 1.

12
←|Top|Bot|→|�|TOC

Physically Allowed Reversible Operators

• Define an operator U by linear extension of
U x〉

S
=

∑
y uyx y〉

S

To be well-defined, U x〉
S

must be a state:∑
y |uyx|2 = 1.

U ’s linear extension must preserve states.

12
←|Top|Bot|→|�|TOC

Physically Allowed Reversible Operators

• Define an operator U by linear extension of
U x〉

S
=

∑
y uyx y〉

S

To be well-defined, U x〉
S

must be a state:∑
y |uyx|2 = 1.

U ’s linear extension must preserve states.
Consider U 1√

2
(x〉

S
+ eiφ z〉

S
) =

∑
y

1√
2
(uyx + eiφuyz) y〉

S
.

12
←|Top|Bot|→|�|TOC

Physically Allowed Reversible Operators

• Define an operator U by linear extension of
U x〉

S
=

∑
y uyx y〉

S

To be well-defined, U x〉
S

must be a state:∑
y |uyx|2 = 1.

U ’s linear extension must preserve states.
Consider U 1√

2
(x〉

S
+ eiφ z〉

S
) =

∑
y

1√
2
(uyx + eiφuyz) y〉

S
.

1 =
∑

y
1
2|uyx + eiφuyz|2

12
←|Top|Bot|→|�|TOC

Physically Allowed Reversible Operators

• Define an operator U by linear extension of
U x〉

S
=

∑
y uyx y〉

S

To be well-defined, U x〉
S

must be a state:∑
y |uyx|2 = 1.

U ’s linear extension must preserve states.
Consider U 1√

2
(x〉

S
+ eiφ z〉

S
) =

∑
y

1√
2
(uyx + eiφuyz) y〉

S
.

1 =
∑

y
1
2|uyx + eiφuyz|2

=
∑

y
1
2(|uyx|2 + |uyz|2 + eiφūyxuyz + e−iφuyxūyz)

12
←|Top|Bot|→|�|TOC

Physically Allowed Reversible Operators

• Define an operator U by linear extension of
U x〉

S
=

∑
y uyx y〉

S

To be well-defined, U x〉
S

must be a state:∑
y |uyx|2 = 1.

U ’s linear extension must preserve states.
Consider U 1√

2
(x〉

S
+ eiφ z〉

S
) =

∑
y

1√
2
(uyx + eiφuyz) y〉

S
.

1 =
∑

y
1
2|uyx + eiφuyz|2

=
∑

y
1
2(|uyx|2 + |uyz|2 + eiφūyxuyz + e−iφuyxūyz)

= 1 + 2
∑

y Re(eiφūyxuyz)

12
←|Top|Bot|→|�|TOC

Physically Allowed Reversible Operators

• Define an operator U by linear extension of
U x〉

S
=

∑
y uyx y〉

S

To be well-defined, U x〉
S

must be a state:∑
y |uyx|2 = 1.

U ’s linear extension must preserve states.
Consider U 1√

2
(x〉

S
+ eiφ z〉

S
) =

∑
y

1√
2
(uyx + eiφuyz) y〉

S
.

1 =
∑

y
1
2|uyx + eiφuyz|2

=
∑

y
1
2(|uyx|2 + |uyz|2 + eiφūyxuyz + e−iφuyxūyz)

= 1 + 2
∑

y Re(eiφūyxuyz)
= 1 + 2Re(eiφ

∑
y ūyxuyz).

12
←|Top|Bot|→|�|TOC

Physically Allowed Reversible Operators

• Define an operator U by linear extension of
U x〉

S
=

∑
y uyx y〉

S

To be well-defined, U x〉
S

must be a state:∑
y |uyx|2 = 1.

U ’s linear extension must preserve states.
Consider U 1√

2
(x〉

S
+ eiφ z〉

S
) =

∑
y

1√
2
(uyx + eiφuyz) y〉

S
.

1 =
∑

y
1
2|uyx + eiφuyz|2

=
∑

y
1
2(|uyx|2 + |uyz|2 + eiφūyxuyz + e−iφuyxūyz)

= 1 + 2
∑

y Re(eiφūyxuyz)
= 1 + 2Re(eiφ

∑
y ūyxuyz).

Hence
∑

y ūyxuyz = 0.

12
←|Top|Bot|→|�|TOC

Physically Allowed Reversible Operators

• Define an operator U by linear extension of
U x〉

S
=

∑
y uyx y〉

S

To be well-defined, U x〉
S

must be a state:∑
y |uyx|2 = 1.

U ’s linear extension must preserve states.
Consider U 1√

2
(x〉

S
+ eiφ z〉

S
) =

∑
y

1√
2
(uyx + eiφuyz) y〉

S
.

Hence
∑

y ūyxuyz = 0.

12
←|Top|Bot|→|�|TOC

Physically Allowed Reversible Operators

• Define an operator U by linear extension of
U x〉

S
=

∑
y uyx y〉

S

To be well-defined, U x〉
S

must be a state:∑
y |uyx|2 = 1.

U ’s linear extension must preserve states.
Consider U 1√

2
(x〉

S
+ eiφ z〉

S
) =

∑
y

1√
2
(uyx + eiφuyz) y〉

S
.

Hence
∑

y ūyxuyz = 0.

• U is unitary.

12
←|Top|Bot|→|�|TOC

Physically Allowed Reversible Operators

• Define an operator U by linear extension of
U x〉

S
=

∑
y uyx y〉

S

To be well-defined, U x〉
S

must be a state:∑
y |uyx|2 = 1.

U ’s linear extension must preserve states.
Consider U 1√

2
(x〉

S
+ eiφ z〉

S
) =

∑
y

1√
2
(uyx + eiφuyz) y〉

S
.

Hence
∑

y ūyxuyz = 0.

• U is unitary. In matrix form with x ∈ {1, 2, . . . , N}:
U† U 1l

ū11 ū21 . . . ūN1

ū12 ū22 . . . ūN2
...

ū1N ū2N . . . ūNN




u11 u12 . . . u1N

u21 u22 . . . u2N
...

uN1 uN2 . . . uNN

 =


1 0 . . . 0

0 1 . . . 0
...
0 0 . . . 1



12
←|Top|→|�|TOC

Physically Allowed Reversible Operators

• Define an operator U by linear extension of
U x〉

S
=

∑
y uyx y〉

S

To be well-defined, U x〉
S

must be a state:∑
y |uyx|2 = 1.

U ’s linear extension must preserve states.
Consider U 1√

2
(x〉

S
+ eiφ z〉

S
) =

∑
y

1√
2
(uyx + eiφuyz) y〉

S
.

Hence
∑

y ūyxuyz = 0.

• U is unitary. In matrix form with x ∈ {1, 2, . . . , N}:
U† U 1l

ū11 ū21 . . . ūN1

ū12 ū22 . . . ūN2
...

ū1N ū2N . . . ūNN




u11 u12 . . . u1N

u21 u22 . . . u2N
...

uN1 uN2 . . . uNN

 =


1 0 . . . 0

0 1 . . . 0
...
0 0 . . . 1


• Should every unitary operator be implementable?

13
←|Bot|→|�|TOC

Universality for Gate Sets

• Should every unitary operator be implementable?

13
←|Top|Bot|→|�|TOC

Universality for Gate Sets

• Should every unitary operator be implementable?

• A set of gates is universal if every unitary n-qubit operator
can be implemented with a network.

13
←|Top|Bot|→|�|TOC

Universality for Gate Sets

• Should every unitary operator be implementable?

• A set of gates is universal if every unitary n-qubit operator
can be implemented with a network.

H

H

δ
Z

U

=

13
←|Top|Bot|→|�|TOC

Universality for Gate Sets

• Should every unitary operator be implementable?

• A set of gates is universal if every unitary n-qubit operator
can be implemented with a network.

H

δ
Z

H

0/10

U

=

• Other notions of universality:
Allow use of ancillas and measurements.

13
←|Top|→|�|TOC

Universality for Gate Sets

• Should every unitary operator be implementable?

• A set of gates is universal if every unitary n-qubit operator
can be implemented with a network.

H

δ
Z

H

0/10

U

'

• Other notions of universality:
Allow use of ancillas and measurements.
Allow approximation to within arbitrarily small error.

14
←|Bot|→|�|TOC

Locality Constraints on Gate Sets

• Can any n-qubit unitary operator be a gate?

14
←|Top|Bot|→|�|TOC

Locality Constraints on Gate Sets

• Can any n-qubit unitary operator be a gate?

“Good” gates are physically realizable in one step.

14
←|Top|Bot|→|�|TOC

Locality Constraints on Gate Sets

• Can any n-qubit unitary operator be a gate?

“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

14
←|Top|Bot|→|�|TOC

Locality Constraints on Gate Sets

• Can any n-qubit unitary operator be a gate?

“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.
The Toffoli gate: c2not(ABC) = if A&B then not(C).

A

B

C

14
←|Top|Bot|→|�|TOC

Locality Constraints on Gate Sets

• Can any n-qubit unitary operator be a gate?

“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.
The Toffoli gate: c2not(ABC) = if A&B then not(C).

A

B

C

1〉
A

1〉
B

1〉
A

1〉
B

0〉
C

1〉
C

14
←|Top|Bot|→|�|TOC

Locality Constraints on Gate Sets

• Can any n-qubit unitary operator be a gate?

“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.
The Toffoli gate: c2not(ABC) = if A&B then not(C).

A

B

C

1〉
A

1〉
B

1〉
A

1〉
B

1〉
C

0〉
C

14
←|Top|Bot|→|�|TOC

Locality Constraints on Gate Sets

• Can any n-qubit unitary operator be a gate?

“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.
The Toffoli gate: c2not(ABC) = if A&B then not(C).

A

B

C

abc〉
ABC

 ab(c + a · b)〉
ABC



14
←|Top|Bot|→|�|TOC

Locality Constraints on Gate Sets

• Can any n-qubit unitary operator be a gate?

“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.
The Toffoli gate: c2not(ABC) = if A&B then not(C).

A

B

C

abc〉
ABC

 ab(c + a · b)〉
ABC


Discreteness: Finite gate sets are preferred.

14
←|Top|Bot|→|�|TOC

Locality Constraints on Gate Sets

• Can any n-qubit unitary operator be a gate?

“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.
The Toffoli gate: c2not(ABC) = if A&B then not(C).

A

B

C

abc〉
ABC

 ab(c + a · b)〉
ABC


Discreteness: Finite gate sets are preferred.

Fault tolerance: Elementary gates should be
experimentally verifiable and readily made stable.

14
←|Top|→|�|TOC

Locality Constraints on Gate Sets

• Can any n-qubit unitary operator be a gate?

“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.
The Toffoli gate: c2not(ABC) = if A&B then not(C).

A

B

C

abc〉
ABC

 ab(c + a · b)〉
ABC


Discreteness: Finite gate sets are preferred.

Fault tolerance: Elementary gates should be
experimentally verifiable and readily made stable.

• . . . but do investigate other gate sets.

15
←|→|TOC

Contents
Title: IQI 04, Seminar 3 . 0
Classical Oracles . top. . . 1
Parity Oracles . top. . . 2
Reversible Oracles . top. . . 3
Quantum Oracles . top. . . 4
The Quantum Parity Problem I . top. . . 5
The Quantum Parity Problem II . 6
The Quantum Parity Problem III . 7
Summary of Gates Introduced So Far top. . . 8

Properties of Reversible Gates I . top. . . 9
Properties of Reversible Gates II . 10
Preservation of Products of “Flips” top. . . 11
Physically Allowed Reversible Operators top. . . 12
Universality for Gate Sets . top. . . 13
Locality Constraints on Gate Sets . top. . . 14
References . 16

16
←|TOC

References
[1] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26:1411–1473, 1997.

[2] L. K. Grover. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett., 79:4709–4712, 1997.

[3] D. A. Meyer. Sophisticated quantum search without entanglement. Phys. Rev. Lett., 85:2014–2017, 2000.

